Aldosterone decreases UT-A1 urea transporter expression via the mineralocorticoid receptor.

نویسندگان

  • Randy A Gertner
  • Janet D Klein
  • James L Bailey
  • Dong-Un Kim
  • Xiao H Luo
  • Serena M Bagnasco
  • Jeff M Sands
چکیده

Adrenalectomy in rats is associated with urinary concentrating and diluting defects. This study tested the effect of adrenal steroids on the UT-A1 urea transporter because it is involved in the urine-concentrating mechanism. Rats were adrenalectomized and given normal saline for 14 d, after which they received (1) vehicle, (2) aldosterone, or (3) spironolactone plus aldosterone. Adrenalectomy alone significantly increased UT-A1 protein in the inner medullary tip after 7 d, whereas aldosterone repletion reversed the effect. Spironolactone blocked the aldosterone-induced decrease in UT-A1, indicating that aldosterone was working via the mineralocorticoid receptor. For verifying that glucocorticoids downregulate UT-A1 protein through a different receptor, three groups of adrenalectomized rats were prepared: (1) vehicle, (2) adrenalectomy plus dexamethasone, and (3) adrenalectomy plus dexamethasone and spironolactone. Dexamethasone significantly reversed UT-A1 protein abundance increase in the inner medullary tip of adrenalectomized rats. When spironolactone was given with dexamethasone, it did not affect the dexamethasone-induced decrease in UT-A1. There was no significant change in serum vasopressin level, aquaporin 2, or Na(+)-K(+)-2Cl(-) co-transporter NKCC2/BSC1 protein abundances or UT-A1 mRNA abundance in any of the groups. In conclusion, either mineralocorticoids or glucocorticoids can downregulate UT-A1 protein. The decrease in UT-A1 does not require both steroid hormones, and each works through a different receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3.

Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a cons...

متن کامل

Regulation of Urea Transporters by Tonicity-responsive Enhancer Binding Protein

Urea accumulation in the renal inner medulla plays a key role in the maintenance of maximal urinary concentrating ability. Urea transport in the kidney is mediated by transporter proteins that include renal urea transporter (UT-A) and erythrocyte urea transporter (UT-B). UT-A1 and UT-A2 are produced from the same gene. There is an active tonicity-responsive enhancer (TonE) in the promoter of UT...

متن کامل

Glucocorticoids inhibit transcription and expression of the UT-A urea transporter gene.

Dexamethasone treatment increases urea excretion and decreases urea permeability and urea transporter UT-A1 protein abundance in the inner medullary collecting duct (IMCD) of adrenalectomized rats. We examined the effect of dexamethasone treatment for 3 days on the abundance of several UT-A mRNA transcripts in rat renal medulla. By Northern blot analysis, a significant decrease in mRNA expressi...

متن کامل

Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts.

Urea transport, mediated by the urea transporter A1 (UT-A1) and/or UT-A3, is important for the production of concentrated urine. Vasopressin rapidly increases urea transport in rat terminal inner medullary collecting ducts (IMCD). A previous study showed that one mechanism for rapid regulation of urea transport is a vasopressin-induced increase in UT-A1 phosphorylation. This study tests whether...

متن کامل

Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking.

The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2004